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ABSTRACT

A mathematical model for computer aided instruction is
developed. It is assumed that the course is divided into a hierarchy
of levels of difficulty. These levels are such that if a student
is able to perform successfully at a given level of difficulty, he
can also perform successfully at all levels of lesser difficulty.
Furthermore, if a student performs successfully at one level,
it increases his probability of being able to perform successfully
at the next higher level of difficulty. Given the initial vector
of probabilities for successful performance at each level, the
vector describing how these probabilities change with successful
performances at each level, and the expected times it takes to
attempt a successful performance at each level, this model
computes an instructional sequence that minimizes the expected
time required for the student to complete the course by performing
successfully at the highest level of difficulty. Dynamic programming
is used to find this sequence.



TABLE OF CONTENTS

Section Page

I. INTRODUCTION 1

II. THE MODEL 3

Mathematical Formulation 3

Some Solution Properties 4

Algorithm for Two Levels 8

Additional Solution Properties 10

General Algorithm 13

III. ESTIMATION OF PARAMETERS 14

Maximum Likelihood 14

Confidence Intervals 17

A Linear Estimator Model 20

IV. EXAMPLE 26

LIST OF SYMBOLS 29

REFERENCES 30



LIST OF TABLES

Table Page

1. Output for Level 2 27

2. Output, for Level 3 28

-iv-



A MARKOV DECISION MODEL FOR COMPUTER-

AIDED INSTRUCTION

I. INTRODUCTION

Several researchers have been interested in the application

of optimization techniques to models of learning and instruction.

Karush and Dear (1966) developed an optimal strategy for teaching

students to learn a list of independent items. The basic assumption

was that an item is either in a learned or unlearned state. If it is

given in the unlearned state it goes to the learned state with

probability c, while once it reaches the learned state it stays

there. Atkinson and Paulson (1972) described experiments in

which extensions of this model were applied to computer-assisted

spelling instruction with elementary school children. Chant and

Atkinson (1973) developed an optimization technique for allocating

instructional effort to two interrelated blocks or strands of

learning material. Their key assumption was that the learning

rate for each of the two strands depends solely on the difference

between the achievement levels on the two strands.

The model of this report concerns a system where a student

is to be taught to perform .a certain skill at a given level of

competence. He achieves this by working problems through or

taking tests at various levels of difficulty. It is assumed that



if a student is able to perform successfully at one level of difficulty

he is able to perform at the next lower or preceding level of difficulty

and consequently at all lower levels of difficulty. This assumption

is particularly avOinable in the following two situations.

The first situation is one where the material covered at one

level includes all that covered at preceding levels, plus some

additional material. An example of this is a program developed

at Behavioral Technology Laboratories to teach students Kirchoffts

laws. This course is comprised of eleven levels with the lowest

level defining the units for voltage, current and resistance up to

the highest level which deals with the application of Ohm's law

and KirchOff's voltage and current laws in complex networks.

The second situation is one where the material and problems

covered at a particular level are virtually the same as at the

immediately preceding level except more clues and hints are given

at the preceding level. A good example of this would be a version

of the Kirchoffis laws program considered earlier at Behavioral

Technology Laboratories in which problems would be given at the

following levels:

1. Problems are given in steps with cues and knowledge

of results at each step.

2. Problems are given in steps with no cues or knowledge

of results at each step..

3. The student solves problems in steps but he chooses the steps.

-2-



4. The student is simply given problems and asked to solve

them.

Note, however, the assumption given for this model would not

be applicable for the situation where a given level did not use certain

material introduced at preceding levels.

It is also assumed that if a student performs successfully at

one level, it will increase his probability of being able to perform

successfully at the next higher level. The student completes the

course when he performs successfully at the highest level. The aim

of the model presented in this paper is to choose the levels at which

problems should be assigned in the course sequence so the expected

time required by the student to complete the course is minimized.

. THE MODEL

Mathematical Formulation

The problem of instructing the student so that he completes the

course in minimum time is formulated as a Markov decision process.

The set of actions are 1, N where action i is that of giving the

student a problem at level i. The levels are numbered in decreasing

order of difficulty. Thus level 1 is the hardest and level N the

easiest. The state 0 is that in which the student has performed

successfully at level 1. The states in which the student has not

performed successfully at level 1 are characterized by the vectors

p = , pn) where pi equals the probability that the

student will correctly do a problem at level i. It is assumed



that if a student can do a problem at level i, he can also do it

at level j for all j > i. Thus, pi is non-decreasing in i.

For each action i, let

qi = P [student can perform at level i - 1/student completes

problem at level i correctly and could not perform

at level i - 1 before] .

Thus, if the state is p and we perform action 1, we go to

state 0 with probability pl and remain in state p with probability

(1 - If we take action i >1 we go to state p with probability pi

where pi.a = pi -1 + qi(1 - pi_i), = pk, k # i 1, and remain in state

p with probability (1 - pi).

Equivalently, the components of p above may be represented

by the following:

Pit (1- qi) pi_1 qi

plc Pk k # 1-1
(1)

Once the system reaches state 0, it remains there. Associated with

each action, i, is a cost ci which may be equal to the expected time

it takes to attempt a problem at level i. It is desired to choose an

action policy that reaches state 0 at minimum cost.

Some Solution Properties

A policy specifies an action for each state of the system other

than state 0. Let V(ir, p) be the total expected cost under policy ir

when the system is in state p. If i is the action specified for state p

by ir, then it follows that:

-4-



V(w, p) = ci + piV(w, + (1 - pi)V(wsp)

(2)

where PL.., = (1-qi) + qi and jok = pk for k # i-1.

It is of course desired to find r so that V (w, p) < V (77, p)

for all p and all it.

Note that if action i is taken and the student does not complete

his task at level i successfully, the state does not change and action

i will be repeated. Thus any action taken will be repeated until the

student completes a problem correctly at which time the state changes

and a new action may be taken. In addition, the state resulting from

the first time the student performs correctly at level I. is independent

of the number of attempts it takes the student to perform successfully

at that level. Thus Tr and p determine a sequence of correct

responses at each level though not the number of trials necessary

to obtain these responses. Of course, the sequence must end with

one correct response at level 1. The expected number of trials

necessary for the student to complete a problem successfully at

level i is 1 /pi and the expected cost of this is ci/pi.

Consider the policy that requires performance at level 1 only

for p. The cost of this policy would be ci/pl which would be less

than that of any policy requiring more than ci/cipi successful.

performances at level i. Hence, the set of performance sequences

for p that are superior to testing at level I only is finite and there

is an optimal sequence for each p. This establishes the existence of

a policy w satisfying V(Tr, p) < V(Fr,p) all p and all a.



We are now ready to prove the following theorems.

Theorem 1: If p - r > 0, then V(w, p) < V(w, r), if w is an

optimal policy.

Proof: If It consists of one correct response (at level 1) for

both p and r, then V(w,p) = ci/pi while V(tr, r) = yr, and the

theorem holds. Suppose the theorem holds for all p and r such

that w specifies n or fewer total correct responses for r.

Consider p and r such that it requires n + 1 or fewer correct

responses for r and let i be the level at which the first correct

response for state r must take place. Then V(ir, p) < ci/pi + V(w, I))

and V(w, r) = ci/ri + V(ir, i) where from (1) 1)1_1 =

(1 - qi) pi., + qi, = (1 - qi) ri_i + qi, Pk = pk and rk = rk for k

Thus p > r, r requires n or fewer correct responses and

p) < V(Ir, r). The theorem follows from induction.

Theorem 2: There is an optimal policy it such that if

a2, , an is the sequence of the levels of correct responses for

state p, then ak > ak+1 all k.

Proof: Let it be an optimal policy and al, a2, , an be the

sequence specified for p. Suppose there is a k such that ak < ak+i .

Let p be the state and c the expected cost resulting from the correct

responses to the sequence al, a2, ...,ak.i for the initial state p.

Consider the policy i which differs from it only in that ak and a.x+l

are interchanged in the sequence for p and let i = ak+l, 3 = ak.



If j < i-1, then V(r, p).= V( p) = c + c./P. + j + V(ir, whern from (1),

= (1-qi) + qi, = (1-qi) + qj, all other L and

consequently V(w, p) = p). Also from (1), if j = i-1, then

V(r, p) = c + + c1_1/ + V(r, r), where r is defined above while

= c + ci/pi + ci_1/ [(1-qi)/51..1 + q.] + V(r, r), Thus V(i, p) < V(r, p)

and i is also optimal. Continuing in this manner, an optimal sequence for

p is eventually obtained in which the members of the sequence are in

non-increasing order. The theorem follows since p is general.

Thus the search for an optimal policy may be confined to those

which yield a sequence of correct responses at levels that are non-increasing

in the sequence.

As noted before, if one elicits one correct response at level i,

pi -1 is transformed to (1-qi) + qi. Applying this transformation

recursively it follows that if one elicits k correct responses at level

pi.l is transformed to (1-qdk (1-q1)k-1 which

sums to 1 - (1-qi)k (1-1)14). Thus, if r is a policy of the above

type and specifies k(i) correct responses at level i for p, then

N
V(r, p) = E k(i) c /Pi where

i=1

5)N PN

pi = 1-(1-pi) (1-qi+1)kci+1) f or i < N

(3)



Let Vn(p) be the minimum cost for state p if we restrict

instruction, to levels 1, . , n. That is no instruction takes place

at levels n + 1, n + 2, ip N. Of course, only the first n

components of p are relevant in determining Vn(p) and throughout

the remainder of this paper it will be assumed that p is restricted
to ...,pn in Vn(p).

In other parts of this paper, the symbol p will be used to

represent restrictions of p to certain components where the

restriction is obvious. In particular, in the expression, Vn(p,pn),

p represents the restriction of p to P1' P2'

From Theorem 2 and (3) if follows that

min
Vn(p) = k Vlici(P)1 where

Virci (p) = k cn/pn + Vn_i (p, 1-(1-qn) (

V1(p) = .

Note that in the right hand side of the second line of (4) p

Pn-2))

represents the restriction of p to P1' P2' 'Pn-2'

Algorithm for Two Levels

For the two levels problem it follows from (4) that

min L.

V2(p) = k (pi
2 where

(p) = k c2/p2 + ci/ (1 - (1-q2)k (1-p1))

(4)

(5)



Consequently,

V(p) - 4-1(p) = c2/p2 + ci/(1 -q2)k(1-p1)) - ci/(1-(1-q )1c-1(1-p1)),

4(p) < 4-1(p)if and only if the expression in (6) is less than or

equal to zero. This happens if and only if

p2 > f(k, p1) where

[
I /(1-q2) 1 pi)

f(k, pi) = c2 (1-q2)k (1-p1) - (2-q2) + k-1
952

(7)

for k = 1,2...

This, requiring a student to perform successfully k times at

level 2. is preferred to requiring him to perform successfully k-1

times at level 2 if r2 > f(k, p1), while requiring him to perform

successfully k-1 time at level 2 is preferred if p2 < f(k, p1), and

these two strategies yield equal costs if p2 = f(k,

Theorem 3: In (7), f(k, p1) is nondecreasing in k and is

non-negative in all k.

Proof: Substituting in (7) and rearranging terms one obtains

2fa, pi) = c2 [ pi% + (1- (1-pd) / (1-pi) /c1 q2 which is clearly non-

negative. Also, f(k, p1) - f(k-1, pd=c2[1/(1-q2) k-1(1-pi) -(1-q2)k-1(1 ) /ci

which is non-negative since the positive term of the second factor in

411,
the numerator exceeds 1 while the negative one is less than 1.

-9-



Thus, f(k, p1) is increasing in k. Q. E. D.

Theorem Define f(0, p1) = 0 and f(k, p1) as in (7) for

k = 1, 2, ... , m, where m is such that f(m, p1) > 1 and f(m-1, p1) < 1.

Then the value of k that minimizes (5) is that which satisfies

f(k, p1) < p2 < f(k 1, p1).

Proof: If i< k, it follows immediately from Theorem 3 that

V(p) < v111(0 < <

< < Vi(p).

V2 (p) and similarly if i > k, V2(p) < V +1 (p)
2 2

Thus from Theorem 4, for fixed pr the number of successful

performances required at level 2 to minimize cost is an increasing

step function of p2, starting at 0 for p2 = 0 and advancing in

increments of one.. The minimizing cost may be found from (5) once

k is known.

Additional Solution Properties

In calculating Vn(p), it is much more difficult to get a closed

form such as that for V
1
(p) and V2(p). However, as this section

will show, for fixed Pn-1' Pn-2 ' , p1, the value of k that minimizes

(4) is a non-decreasing step function inpn with a value of 0 at pn = 0.

However, the increments of the step function are not necessarily one.

The next lemma and two theorems show this. First, define

-10-



fn(j, k, p) = (k -j) cn/ [ Vn.i(p, 1- (1-qn)i (1-Pn-1))-Vn-1(P'1-(1-cl )k(1-Pn)) 1
(8)

for j < k, p = (p2,

Lemma 5: In (8), fn(j,k, p) > 0 when defined and Vni(p) > Vt(p)

for pn < fn (j, k, p); Vn(p) < V: (p) for pn > fn(j,k,p); and equality

holds for pn = fn(j, k, p).

Proof:. The denominator of fn(j,k,p) is non-negative by

Theorem 1. The theorem then follows from the definition of

Vn(p) in (4).

Theorem 6: The number of successful performances required

at level n in order to realize V n(p) is non-decreasing in pn.

Proof: For i = 1 the theorem obviously holds since only one

successful performance is required for all pl. For n >1 assume

the theorem is false. Then there is a system with k > 1, pn < Pn

such that pn) < Vni (p, pn) and Vni(p, < Vt(p,pn). Let

fn(j,k, p) be as defined in Lemma 5. Then in < fn(j,k, p) and

pn > fn(j,k,p) for a contradiction.

Thus, it has now been shown that for fixed n..1, p2, ...,pn_i, the

value of k that minimizes Vn (p) is a non-decreasing step function

of pn.

Of course, for pn = 1, the minimizing value of k cannot exceed

V n-l(p)/cn, since any value exceeding this would be inferior to k = O.



Also, fn(j,k, p) > cn/
1.

Vn_1(p, 1- (1-qn)i (1-pn_1)) Vn_1(p, 1) I

. Thus, if Vn (p, 1- (1-qn)1 (1- Pn-1)) cn Vn-1(13'
1), fn(j, k, p) > 1

<

and J successful performances is preferred to k successful

performances for all k > j. Thus, the sequence of optimal values

of k in (4) is a subsequence of the set 0, 1, 2, " ' [ Vn-l(P)/cn]'

where j is the smallest integer satisfying

(1-cln)j(1-&-n-1
) < cn + V

n-1 &
(n' 1)

Theorem 7: Suppose j < k < L and fn(j, k, p) > fn(k, 4 p) and

pi, 132, pn -1 are fixed. Then Vlici(p) Vn(p) for any pn.

Proof: For pn < fn(j, k, p), Vin(p) < Vt(p) while for pn >

Pn > fn(k, 4 p) and Vn(p) < Vt(p).

fn(j,k,

Theorem 8: Suppose n(1), n(2), ...,n(m) is an increasing

sequence of integt such that fn(n(i), n(i +1), p) is increasing in

i and that Vi(p) # Vn(p) for any pn if j is not in this sequence.

Then Vn
n(i) (p) = Vn(p) for fn(n(i-1), n(i), p) < pn < fn(n(i), n(i+1), p).

Proof: For

< < (P, Pn)

Pn > fn (n(1-1), n (i). P). Vnn(i)(P. Pn) < Pn)

for pn < fn(n(i), n(i+1), p),

Vn(i+1)(1). Pn) < < Vn(m)(13, Pn)

-12-
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This means one may start with the sequence 0,1, ..., min

Orn_1(P)/cn1,j .} , where j is the smallest integer such that

Vn-1(p, 1- (1-qn)j (1-PLiminaten-1)) < cn Vn-1(p), e those members

that cannot be optimal for any pn by Theorem 7, continue to eliminate

from the remaining sequence until the sequence left satisfies the

conditions of Theorem 8. This procedure must be finite since

only a finite number of eliminations may occur.

General Algorithm

Formally, the algorithm for finding the value of k that

minimizes Vkn(p) as a function of pn is as follows:

Algorithm 1

1. Set n = 1 and Vn(p) "i/Pr
2. If n = N, terminate. Otherwise increase n by one and

define n(0), n(1), n(m) where n(i) = i and

m = min {[Vn_1(P)/cn] where j is the smallest

integer satisfying Vn_1(p, 1 - (i-cln))(1-Pn-1))

cn + Vn-1(p'1).

3. Compute fn(n(i), n(i+1), p) for i = 1, ... ,k-1 according

to the formula in (8). For n > 2, Vn-l(P) may be

calculated by Algorithm 2.

4. If no i satisfies fn(n(i), n(i+1), p) > fn(n(i+1), n(i +2), p)

delete from the sequence any i such that fn(n(i),n(i+1),p) >1

and return to 2 as the value of k which minimizes VV(p)

-13-



is that which satisfies fn(n(i-1), n(i), p) < pn < fn(n(i),

n(i +l), p). Otherwise delete any i from the sequence

satisfying fn(n(i), n(i +l), p) > fn(n(i+1), n(i+2), p), relabel

the members of the remaining sequence n(0), n(1), n(m)

in increasing order with m + I equaling the number of

elements in the remaining sequence and return to step 3.

Given the sequences generated by algorithm 1, the optimal

number of successful performances to require at each level and Vn(p)

for n >1 may be found as follows.

Algorithm 2

1. Set m = n and define in = pn, k(n) as the n(j),that

satisfies fn(n(j-1), n(j), p) < pn < fn(n(j), n(j+1), p).

2. Decrease m by one.

3. Define Pm = 1 - (1-pm)(1-qm+1)k(m+1) . Then define

k(m) as the n(j) that satisfies fm(n(j-1), n(j), p) < Pm

< f(n(j), n(j+1),p).

4. yf m = 2, define pl = 1 -(1-p
1
)(1-q2 )k(2) and go to 5.

Otherwise go to 2.

5. Terminate. Vn(p) = E k(i)ci/iii where k(1) = 1.
i=1

III. ESTIMATION OF PARAMETERS

Maximum Likelihood

The past performances of students may be used to obtain a maximum

likelihood estimate of the p and q input vectors.

Let aki and bki respectively be the number of incorrect and

-14-



correct responses of students at level i who had given k correct

responses at level i + 1, and define L(p, q) as the likelihood

function of the vector (p, q). It follows from (3) that

n m aki
L(p,q) = n (1-pi) 1(1-qi+i)

k
(1-(1-pi) (1-qi+i)k )

bki
(9)

k=0

Taking the partial derivatives of L(p, q) with respect to all pi and

qi one obtains (10) and (11) setting them to zero yields (12) and (13). .

8 m [ -aki14(Pi ci) - L(p, q) .E 1-131=1Bpi
1

8L(p, q)
acli+1

bki (l-qi+1)k

1 (1-pi)(1-qi+i)k

m "kaki kbki (1-pi)(1-q.1 +1)k-1
= L(p, q) E +

k= 0
k1-(1-pi) (1-qi+i)

bki(1-pi)(1-qi+1)k
E

k 0
ak1

k= 0
. = E

1-(1-pi)(1-qi+dk=

kbki(1-pi) (1-qi+1)k
E kaki =

E
1k=0 k=0 -(1-pi)(1-qi+i)
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(12)

(13)



Note that in (12) and (13) the only unknown that parameter pi

depends on is qi.+1 and vice versa. Thus the p and q vectors may

be estimated by solving sets of two simultaneous equations in two

unknowns. However, there is no analytical way of solving these

equations in general for pi and qi+1. Nevertheless, suppose

one takes into account only the values of k with the highest number

of observations. Denote these values by r and s.

Then from (12) and (13) one obtains

a + a. .
T1 SI

r ari+s asi

br.(1-q (1-qi+1)r

I-(1-pi) (1-q141)r

rbri(1-1)1)(1-cli+1)

1-(1-pi)(1-qi+1)

b .(1-p.)(1-q.+1)s

1-(1-pi)(1-q141)8

s bsi(1-pi)(1-qi+i)s

1-(1-pi)(1-qi+1)s

Subtracting r times equation (14) from equation (15) yields

(s-r) a ,
1-(1-p1)(1-q141)5

(s-r)bsi.(1-pi)(1-qi+i)8

which yields

asi =
b Si 1(1-p.)(1-q. +1

)s

1-(1-pi)(1-qi+1)s

(14)

(15)

(16)

(17)



ari
b__.(1-pi)(1-qi+1)r

_

1-(1-pi)(1-qi+1)r

From (17) and (18) one obtains

(1-pi)(1-qi+1)r

(1 Pi) (1-

a.
ri

a . + b .
Xr

a.
51

a si + b
51

.

(18)

(19)

(20)

where Xr and 51 s are the proportion of unsuccessful performances

at level i given r and s successful performances at level i + 1

respectively. Solving these two equations for estimates of pi and

one obtains
-r

1

s-r s-r
pi = -3-Cr Xs

1

s-r
qi = 1-(5Cs/Xr)

(21)

(22)

Confidence Intervals

Consider the two Bernoulli random variables, Xr and Xs,

with parameters (1-pi)(1-qi+1)r and (1-pi)(1-qi+ds respectively.

From (19) and (20) it follows that Xr and Rs are the sample

means of such random variables. Thus, it follows that for large sample

sizes, a 100 (1 4) percent confidence interval for (1-pi)(1-qii1) r is given

by:
-17-



Llr = %r(litr)r a[77---i-.

L2r = 3?
r

+ Z 4 3-cr(1-.R. r)

ari + bri

and for (1-pi) (1-qi+1)s by

Lls = 4 ycsascs,
7

Xs -
av--71.bsi si

L2s = Xs +. 43c.(1 -Rs)
Jasi +b .

s3.

(23)

(24)

(25)

(26)

where Z = Z14, /2; that is P [Z < Z14s /2] = 1 - p /2 where Z

is standard normal. *

Since the probabilities that (Lire L2r) and (Lis, L28) bracket

(1-pi) (1-qi+1)r and (1-pi) (1-qi+1)8 are each 14 and independent, the

probability that both of thT.se bounds 1,old is 1-243 s 2 1-2 p .

*Larson (1966).
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From this it follows that Lis/Lai. and Las/Lir form a 100 (1-2P ) percent

confidence interval for (1-qi)13-r. Similarly it follows that Lisr/Lars

and Ls /141. form 100 (14) ) percent confidence interval for (1-p. s-r
Zr ls

1

These sets of bounds taken to the 1/(s-r) power give 100(1-2P ) s-rpercent

confidence intervals for (1-qi+1) and 61-pi) respectively. Consequently

a 100(1-a) percent confidence interval for pi is given by
1

P1 1 (Ij2r/Lls )8-r

1

P2 = 1 - (LBlr /Lr )s -r
2s

and for gin by

Q1

1

Q2 = 1 - (Lls/L2r )s-r

(27)

(28)

(29)

(30)

where Lis' L2s ' Llr' L2r are as defined in (15 - 18) and P = (1-012)s-r

Note that the above simplifies if s-r = 1 and that this is likely

to happen as the two most likely choices for the number of successful

performances to require at a given level are likely to be consecutive

integers.

-19-



A Linear Estimation Model

In this model the student is given a questionnaire to

determine his level of competence. Each question is scored one

or zero, depending on whether the student answers the question

right or wrong. The pi s and qii s for a student are each

assumed to be linear combinations of the scores he receives

on a question. Thus,

qi =

= E u. w..
J

v..w.
1,1 J

where wj is the score on question j for j >1 and w0 F.-- 1.

This yields, for the vector pair (u, v), the likelihood function

(31)

(32)

n
L(u, v) = II II_ (1- E u..w..) (1- E v. .w. )k (1-(1- E u..w. )

; jz 1+13 ji le X. Ji

(33)

(1 E v. w.1+13 ji)k

where w. is the score of student or trial t on question j and

Xi = : studeiit responds incorrectly at level i

Xi = I Q : student responds correctly at level i

-20-



Note that in (33) k is actually a function of 1.

Taking partial derivatives of L(u, v) one obtains:

aL(u, v) L(u, vba uii [I "----*-w" +
,_ir. 1- Eu,.w..
/Gill j L.1 .11

v L
kw.,

(u, v)au.. 1- E v, .w.
LT13 Ji

w. (1- E
1

V. .W. )ji +1j 3 1

1-(1- E jfu..w )(1- Ev. .w. )ki+lj 31

(34)

x(1-E u..w. )(1- E v. w ,-1
j . ji)

1 -(1 Eu..w. )(1- Evw )k (35)
j i+lj

Setting both derivatives equal to zero, one obtains:

leXi

w. (1- E v. .w. )k
31 14.13 jfw.

1- E u..w. 1-(1- E u..w. )(1- Ev. .w. )kj1 /e Xi . ji j/ 31

kw.
1

1 - E v w
1+1 j j 1

kw.
(
1- E u..w. )(l- Ev. .w. )k-13/ +ij lj 1

jE- u..w- Ev1. w. )k
e X. 1-(1/ )(1+1 it

-21-
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Since different values of I lead to different denominators in the

terms of (36) and (37), some simplification of these expressions in needed.

Let:

wok = number of one scores for question j resulting in

successful performances at level i following k

successful performances at level 1+1.

number of zero scores for question j resulting in

successful performances at level i following k

successful performances at level i+1.

wtijk = number of one scores for question j resulting in

unsuccessful performances at level i following k

successful performances at level 1+1.

w!. number of zero scores for question j resulting in

unsuccessful performances at level i following k

successful performances at level 1+1.

Suppose further that only question j is to be considered on the

questionnaire. Then (36) and (37), when applied to uo, vi+o, uw, vi410

become:

m wt m
=

w. (1-v -v. )kVic ilk i+lj 1+10E
k=0 1-uji-ui0 k=0 1-(1-ui -u. ) (1-v. -v. )kj 1+1j 1+10

m k kw. (1-u -u. )(1-v. -v. )k-1i i= j i+lj 1+10E

k=0 1-v. .-v. ijk=0 1-(1-u -u. ) (1-v. -v. )k
1+13 1+10 1+13 1+10

-22-
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m wf.. m 7.,!..
E

m w.. (1-v. -v. )k_ilk kik kik 1+1 1+10

k=0 1-u..13 -u.
10 u1.

k=0 1- . 0 u-u. )(1-v. .-.k=0 1-(1-..v.
1+10

)k
13 10 1+13

(40)

m (1-v. )k
1.3k 1+10+ E

k=0 1-(1-ui0)(1-vi+10)

m kw... m k kw (1-u. )(1-v. . )kwi'k = E ijk ij -u10
1+1

-v1+10

k=0 1-v..-v.,, k=0 1. . k=0 1-(1-u. -u. 1(1-v. -v. )k
im vi0 ij 10' 1+1 1+10

(41)

(1-u. )(1-v. )k -1m 2.11c 101._ +10+E
k=0 1-(1-u10 )(1-v.

1+10
)k

However, when (37) and (38) are multiplied by 1-uij-ui0 and

1-v. -v. they become (12) and (13) with wf. w. .k, ,v. +v. 101+lj 1H0 1jk' ajk' a+13 a+10

replacing ak, bki, pi, and q1 respectively.

Thus if one takes into account observations corresponding only

to the two highest values of k, r and s, one obtains from (19- 22).

u.. +u = 1
3.3 1,0

w!. r
w.. + w.f.

13r 2.3r

-23-

w!.
1 S

w.. +w! .
1.3S 13S

-r
s-r

(42)



v1. . +v.
1

= 1 -
+13 +10

. + Wt.
11 11 r 11 r)

. (W. . +W1t..
38

)lir 138

1

s-r

(43)

Subtracting (38) and (39) from (40) and (41) and then multiplying

through by 1-1110 and 1-vi+10 yield (12) and (13) with W.? t110 8

replacing am, bki, pi, and qi+1 respectively. Thus, aftervi+10

considering only r and s as values of k, one obtains from (19-22)

and (42) and (43).

;r!.
01 w. + v7!1jr ijr

vi+10 = 1 -

U..
13

w!. (w!. +Vv.. )

r!. (wi. +w.. )ijr 138 13 8

1.1 8 13 I* 11 r

1 r
w.. +w!.

13 I* 13 r

wt.1 8

w. +. . .
13 8 13 8

1

s r

(Vv13..
8 13

wi 8
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(44)

(45)

and

-r s -r
8-1"

. . r
8 w!.

81

8 rWt
1

w. +w +w!1jr ijr 138 1js

(46)



1 1. s-r s-r
(w!. ) w!. (w.. +w!. )

1.11' (47)vi+1j wi.. (w!. + w.. ) w!. (w.. + w!. )qs ur 1)8 S

In a similar manner one could also obtain 100(1 -a) percent

confidence intervals for u.j , u and vi+10 by noting that

100(1 - a ) percent confidence intervals for uii + uio and vi+ki + vi+10

are also 100(1-ce) percent confidence intervals for u.j and vi+ii and

making the appropriate substitutions in (23-30). Note that the length

/ of these confidence intervals tends to zero as the sample size for

both k=r and k=s tend to infinity and consequently the estimates in

(44-47) are consistent.

In (44-47) the weights are based on-the assumption that all

weights except for question j are zero. For the more general case

where this is not assumed, it is suggested that the weights used be the

average of the results in (44-47) taken over all j. That is:

ui0 = 1 -

1
Vi+10

= 1

z
j

s-r
w!.r

w. +w.ik ijrj

w!. (w!. +w.. )kis lir kir

wijt. (w!1j + w.13 . )r s
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w.1 S

w.. + w!.
13 S 13 S

1

s-r

-r

(48)

(49)



1
U. =1j

1

n

w!.ijrr
W. +ijr ijr

w!. r
W. . + .ijr 13r

s-r
Tv!.

1
.11==

. .
23.

+
138

-r
s-T

8
- -r

1 S

l( W.
j 8

+
13

.
8

1

_w!. (w!. +w.. )
1 1js ijr lir 1 wijs (wijr +Wijr)

_
n

3
w!k. (w1!.s 13

+w..
8 1

) n w!. (w.. +w! )ir 3 r 138 lj 8

r

, j #o

where is is the number of questions on the questionnaire.

IV. EXAMPLE

Consider the three level problem with the following data.

(ci,c2,c3) = (6.7, 4.3, 1.9)

p2, p3) = (.07, .23, .46)

(q2,q3) = (.6, .13)

It then follows that Vi(pi) = 6. 7/p1.

-26-
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For level 2, substitute the appropriate values for

(7) to obtain f(k, pi) = .995(.4)k - 1.498 +1.15/.4k -1

c1, c2, pl, q2 in

This yields f(1, p1) = . 050, f(2, p1) = 1.536.. Since the latter exceeds

one, no more than one successful performance at level 2 will ever be

required. This yields the following table for V2(p).

i n(i) f
0

1

0

1

.000

.050

Table 1: Output for level 2

This table may be read as follows. For 0 < p2 < .050, require no

successful performances at level 2. For p2 > .050, require one

successful performance at level 2.

For level 3, note from (8) that

f3(k-1 1 I p) = 1.9/ [V2 (p, 1 -.77(.2)k-1)- V2(p, 1-.77(.2)k)]

In order to find f3(0,1'p), V 2(p' 1-.77(.2)0) = 112(p' .23) and

V2(p, 1-. T7(.2)) = V2(p, .846) must be calculated by algorithm 2. For the

calculation of V(p,.23), k(2) = 1 by table 1. Thus pl = 1-(.4) (.93) = .628

and V(p,V(p,.23) = 4. 3/. 23 + 6.7/. 628 = 29.37. Similarly, V(p, . 846) = 15.75.

Thus f3(0,1, 1 p) = 1.9/(29.37 - 15.75)= .140. Similarly, V2(p, l -. 77(.2)2) =

V2 (p, . 969) = 15.11 and f(1,2,p) = 2.97. For k > 3, V2(p,1 -.77(.2)k-1) <

V2 (p, . 969) = 15.11 and V2 (p, 1-. 77(. 2)k) > V2 (p, 1) = 14.97. Thus

-27-



f(k-1,k, p) > 4.3(15.11 - 14.97) = 30.71 > 1. Thus no more than 1

successful performance at level 3 can be required, yielding the

following table.

i n(i) f

0

1

0

1

.000

.140

Table 2: Output for level 3.

Table 1 and 2 contain the information necessary to use algorithm 2

to calculate

T h u s = 1

and gl = I- .93(.4) = .628. Thus one successful performance is required

at each level and the expected time to complete the course is

V(. 07, .23,.46) = 6.7/.628 + 4.3/.846 +1.9/.46 = 19.88.

V(. 07, .23, .46). From table 2, k(3) = 1 since .140 < .46 <1.

- .77(.2) = .846. From table 1, k(2) = 1 since .140 < .628 <1
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p = 1 ' ' ' pt)

V(r, p)

Vn(p)

Vlici(P)

f(k,p1)

n(jkp)

aki

bki

L(p, q)

.
w.1

.

Nr.

w' 'k

wijk

w' 'k

wijk

List of Symbols
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state vector where pi is the probability
student can perform at level i.

probability student can perform at level
i-1 given that lie performs successfully
at level i and could not previously per-
form successfully at level i 1.

expected cost under policy r when the
system is in state p.

minimum cost for state p if we restrict
instruction to levels 1,... , n.

same as Vn (p) except that exactly k
successful performances at level n are
required.

the value of pn such that V(p) = Vic-1(p)
2

for fixed p1.

the value of pn such that Viji(p) = Vt(p), j < k.

number of incorrect responses at level i
following k correct responses at level i + 1.

number of correct responses at level i
following k correct responses at level i + 1.

the likelihood function of the vector (p, q).

score on question j .

weight of question j upon pi.

weight of question j upon qi

as defined in text.

as defined in text.

as defined in text.

as defined in text.
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